Abstract:Federated learning (FL) encounters substantial challenges due to heterogeneity, leading to gradient noise, client drift, and partial client participation errors, the last of which is the most pervasive but remains insufficiently addressed in current literature. In this paper, we propose FedAdaVR, a novel FL algorithm aimed at solving heterogeneity issues caused by sporadic client participation by incorporating an adaptive optimiser with a variance reduction technique. This method takes advantage of the most recent stored updates from clients, even when they are absent from the current training round, thereby emulating their presence. Furthermore, we propose FedAdaVR-Quant, which stores client updates in quantised form, significantly reducing the memory requirements (by 50%, 75%, and 87.5%) of FedAdaVR while maintaining equivalent model performance. We analyse the convergence behaviour of FedAdaVR under general nonconvex conditions and prove that our proposed algorithm can eliminate partial client participation error. Extensive experiments conducted on multiple datasets, under both independent and identically distributed (IID) and non-IID settings, demonstrate that FedAdaVR consistently outperforms state-of-the-art baseline methods.
Abstract:Although Large Language Models (LLMs) excel in many tasks, their application to Speech-to-Speech Translation (S2ST) is underexplored and hindered by data scarcity. To bridge this gap, we propose PROST-LLM (PROgressive Speech-to-speech Translation) to enhance the S2ST capabilities in LLMs progressively. First, we fine-tune the LLMs with the CVSS corpus, employing designed tri-task learning and chain of modality methods to boost the initial performance. Then, leveraging the fine-tuned model, we generate preference pairs through self-sampling and back-translation without human evaluation. Finally, these preference pairs are used for preference optimization to enhance the model's S2ST capability further. Extensive experiments confirm the effectiveness of our proposed PROST-LLM in improving the S2ST capability of LLMs.
Abstract:Speech tokenizers serve as the cornerstone of discrete Speech Large Language Models (Speech LLMs). Existing tokenizers either prioritize semantic encoding, fuse semantic content with acoustic style inseparably, or achieve incomplete semantic-acoustic disentanglement. To achieve better disentanglement, we propose DSA-Tokenizer, which explicitly disentangles speech into discrete semantic and acoustic tokens via distinct optimization constraints. Specifically, semantic tokens are supervised by ASR to capture linguistic content, while acoustic tokens focus on mel-spectrograms restoration to encode style. To eliminate rigid length constraints between the two sequences, we introduce a hierarchical Flow-Matching decoder that further improve speech generation quality. Furthermore, We employ a joint reconstruction-recombination training strategy to enforce this separation. DSA-Tokenizer enables high fidelity reconstruction and flexible recombination through robust disentanglement, facilitating controllable generation in speech LLMs. Our analysis highlights disentangled tokenization as a pivotal paradigm for future speech modeling. Audio samples are avaialble at https://anonymous.4open.science/w/DSA_Tokenizer_demo/. The code and model will be made publicly available after the paper has been accepted.
Abstract:Establishing the correct correspondence of feature points is a fundamental task in computer vision. However, the presence of numerous outliers among the feature points can significantly affect the matching results, reducing the accuracy and robustness of the process. Furthermore, a challenge arises when dealing with a large proportion of outliers: how to ensure the extraction of high-quality information while reducing errors caused by negative samples. To address these issues, in this paper, we propose a novel method called Layer-by-Layer Hierarchical Attention Network, which enhances the precision of feature point matching in computer vision by addressing the issue of outliers. Our method incorporates stage fusion, hierarchical extraction, and an attention mechanism to improve the network's representation capability by emphasizing the rich semantic information of feature points. Specifically, we introduce a layer-by-layer channel fusion module, which preserves the feature semantic information from each stage and achieves overall fusion, thereby enhancing the representation capability of the feature points. Additionally, we design a hierarchical attention module that adaptively captures and fuses global perception and structural semantic information using an attention mechanism. Finally, we propose two architectures to extract and integrate features, thereby improving the adaptability of our network. We conduct experiments on two public datasets, namely YFCC100M and SUN3D, and the results demonstrate that our proposed method outperforms several state-of-the-art techniques in both outlier removal and camera pose estimation. Source code is available at http://www.linshuyuan.com.


Abstract:Over the last few decades, machine learning (ML) and deep learning (DL) solutions have demonstrated their potential across many applications by leveraging large amounts of high-quality data. However, strict data-sharing regulations such as the General Data Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA) have prevented many data-driven applications from being realised. Federated Learning (FL), in which raw data never leaves local devices, has shown promise in overcoming these limitations. Although FL has grown rapidly in recent years, it still struggles with heterogeneity, which produces gradient noise, client-drift, and increased variance from partial client participation. In this paper, we propose FedOAED, a novel federated learning algorithm designed to mitigate client-drift arising from multiple local training updates and the variance induced by partial client participation. FedOAED incorporates an on-device autoencoder denoiser on the client side to mitigate client-drift and variance resulting from heterogeneous data under limited client availability. Experiments on multiple vision datasets under Non-IID settings demonstrate that FedOAED consistently outperforms state-of-the-art baselines.




Abstract:Test-Time Adaptation (TTA) enhances model robustness to out-of-distribution (OOD) data by updating the model online during inference, yet existing methods lack theoretical insights into the fundamental causes of performance degradation under domain shifts. Recently, Neural Collapse (NC) has been proposed as an emergent geometric property of deep neural networks (DNNs), providing valuable insights for TTA. In this work, we extend NC to the sample-wise level and discover a novel phenomenon termed Sample-wise Alignment Collapse (NC3+), demonstrating that a sample's feature embedding, obtained by a trained model, aligns closely with the corresponding classifier weight. Building on NC3+, we identify that the performance degradation stems from sample-wise misalignment in adaptation which exacerbates under larger distribution shifts. This indicates the necessity of realigning the feature embeddings with their corresponding classifier weights. However, the misalignment makes pseudo-labels unreliable under domain shifts. To address this challenge, we propose NCTTA, a novel feature-classifier alignment method with hybrid targets to mitigate the impact of unreliable pseudo-labels, which blends geometric proximity with predictive confidence. Extensive experiments demonstrate the effectiveness of NCTTA in enhancing robustness to domain shifts. For example, NCTTA outperforms Tent by 14.52% on ImageNet-C.
Abstract:Video data is more cost-effective than motion capture data for learning 3D character motion controllers, yet synthesizing realistic and diverse behaviors directly from videos remains challenging. Previous approaches typically rely on off-the-shelf motion reconstruction techniques to obtain 3D trajectories for physics-based imitation. These reconstruction methods struggle with generalizability, as they either require 3D training data (potentially scarce) or fail to produce physically plausible poses, hindering their application to challenging scenarios like human-object interaction (HOI) or non-human characters. We tackle this challenge by introducing Mimic2DM, a novel motion imitation framework that learns the control policy directly and solely from widely available 2D keypoint trajectories extracted from videos. By minimizing the reprojection error, we train a general single-view 2D motion tracking policy capable of following arbitrary 2D reference motions in physics simulation, using only 2D motion data. The policy, when trained on diverse 2D motions captured from different or slightly different viewpoints, can further acquire 3D motion tracking capabilities by aggregating multiple views. Moreover, we develop a transformer-based autoregressive 2D motion generator and integrate it into a hierarchical control framework, where the generator produces high-quality 2D reference trajectories to guide the tracking policy. We show that the proposed approach is versatile and can effectively learn to synthesize physically plausible and diverse motions across a range of domains, including dancing, soccer dribbling, and animal movements, without any reliance on explicit 3D motion data. Project Website: https://jiann-li.github.io/mimic2dm/
Abstract:In the era of information explosion, Recommender Systems (RS) are essential for alleviating information overload and providing personalized user experiences. Recent advances in diffusion-based generative recommenders have shown promise in capturing the dynamic nature of user preferences. These approaches explore a broader range of user interests by progressively perturbing the distribution of user-item interactions and recovering potential preferences from noise, enabling nuanced behavioral understanding. However, existing diffusion-based approaches predominantly operate in continuous space through encoded graph-based historical interactions, which may compromise potential information loss and suffer from computational inefficiency. As such, we propose CDRec, a novel Continuous-time Discrete-space Diffusion Recommendation framework, which models user behavior patterns through discrete diffusion on historical interactions over continuous time. The discrete diffusion algorithm operates via discrete element operations (e.g., masking) while incorporating domain knowledge through transition matrices, producing more meaningful diffusion trajectories. Furthermore, the continuous-time formulation enables flexible adaptive sampling. To better adapt discrete diffusion models to recommendations, CDRec introduces: (1) a novel popularity-aware noise schedule that generates semantically meaningful diffusion trajectories, and (2) an efficient training framework combining consistency parameterization for fast sampling and a contrastive learning objective guided by multi-hop collaborative signals for personalized recommendation. Extensive experiments on real-world datasets demonstrate CDRec's superior performance in both recommendation accuracy and computational efficiency.
Abstract:Test-Time adaptation (TTA) has proven effective in mitigating performance drops under single-domain distribution shifts by updating model parameters during inference. However, real-world deployments often involve mixed distribution shifts, where test samples are affected by diverse and potentially conflicting domain factors, posing significant challenges even for SOTA TTA methods. A key limitation in existing approaches is their reliance on a unified adaptation path, which fails to account for the fact that optimal gradient directions can vary significantly across different domains. Moreover, current benchmarks focus only on synthetic or homogeneous shifts, failing to capture the complexity of real-world heterogeneous mixed distribution shifts. To address this, we propose MoETTA, a novel entropy-based TTA framework that integrates the Mixture-of-Experts (MoE) architecture. Rather than enforcing a single parameter update rule for all test samples, MoETTA introduces a set of structurally decoupled experts, enabling adaptation along diverse gradient directions. This design allows the model to better accommodate heterogeneous shifts through flexible and disentangled parameter updates. To simulate realistic deployment conditions, we introduce two new benchmarks: potpourri and potpourri+. While classical settings focus solely on synthetic corruptions, potpourri encompasses a broader range of domain shifts--including natural, artistic, and adversarial distortions--capturing more realistic deployment challenges. Additionally, potpourri+ further includes source-domain samples to evaluate robustness against catastrophic forgetting. Extensive experiments across three mixed distribution shifts settings show that MoETTA consistently outperforms strong baselines, establishing SOTA performance and highlighting the benefit of modeling multiple adaptation directions via expert-level diversity.
Abstract:Part-based 3D generation holds great potential for various applications. Previous part generators that represent parts using implicit vector-set tokens often suffer from insufficient geometric details. Another line of work adopts an explicit voxel representation but shares a global voxel grid among all parts; this often causes small parts to occupy too few voxels, leading to degraded quality. In this paper, we propose FullPart, a novel framework that combines both implicit and explicit paradigms. It first derives the bounding box layout through an implicit box vector-set diffusion process, a task that implicit diffusion handles effectively since box tokens contain little geometric detail. Then, it generates detailed parts, each within its own fixed full-resolution voxel grid. Instead of sharing a global low-resolution space, each part in our method - even small ones - is generated at full resolution, enabling the synthesis of intricate details. We further introduce a center-point encoding strategy to address the misalignment issue when exchanging information between parts of different actual sizes, thereby maintaining global coherence. Moreover, to tackle the scarcity of reliable part data, we present PartVerse-XL, the largest human-annotated 3D part dataset to date with 40K objects and 320K parts. Extensive experiments demonstrate that FullPart achieves state-of-the-art results in 3D part generation. We will release all code, data, and model to benefit future research in 3D part generation.